IMPACT at SCALE

Ascending to new heights; scaling data access, teams, and technology to improve patient care.
Since our founding in 2014, the Johns Hopkins Medicine Technology Innovation Center (TIC) has aspired to catalyze organizational transformation at Johns Hopkins. We support innovators by laying the foundations for change—transforming research and applying insights to clinical care.

Accelerating discovery and expanding care to improve health outcomes drives our strategy in three dimensions:

The first dimension of scaling is up. We enable discovery at Johns Hopkins Medicine by eliminating barriers to data-driven research. The inHealth Precision Medicine Analytics Platform (PMAP) is the technical embodiment of this vision, providing disease-specific clinical and research teams with the computational capacity to apply data science, leading to precise diagnoses and intervention. Recently, PMAP has been used to apply computer vision algorithms to brain MRIs, allowing for subgrouping and disease progression tracking of multiple sclerosis patients. This medical image analysis infrastructure can aid other clinical research efforts in a wide range of diseases utilizing image processing pipelines.

But technology is not enough. Transformation at its heart is about human change. This brings us to a second dimension: scaling across. In 2018 we launched the first CAMP (Center of Excellence Analytics in Medicine Program). CAMP is a 12-week leadership course bringing together current and prospective investigators to learn how to conduct data-driven research on PMAP. We taught 70 faculty and staff representing 16 clinical disease research teams in our first cohort. By providing our world-class researchers with the tools and teams to answer their most impactful research questions, we’re speeding up new discovery, sustainably.

The third dimension of scaling—out—is our delivery of new discoveries to improve patient care. The TIC collaborates with inventors to turn discoveries into software solutions that allow clinicians to immediately deliver better care to their patients. We develop EMR-integrated, clinical decision support tools using design thinking practices coupled with usability-centered software development. The result is new risk predictors, views into historical treatment patterns, and just-in-time information for clinicians and patients to make more informed decisions about care.

The next step to scaling is driving greater adoption in these three dimensions, cultivating transformation so it can take root at every corner of Johns Hopkins, and leading the way care is delivered across the globe.
The TIC is a team of leaders, engineers, designers, and data analysts who combine forces to create novel healthcare IT solutions. In 2018, the TIC grew to a team of 30.

Team member differences contribute to the TIC’s strength and growth. Skills range from user experience design to clinical integration, from data visualization to managing leadership programs.
Valuing Impactful Change

Mission
At the Technology Innovation Center, our mission is to collaborate with clinical researchers and clinicians to improve patient care through medical software.

Core Values

Practice Patient-Centeredness: Consider the impact on the patient as central to what we build

Challenge What’s Usual: Take initiative, be relentless, and stay curious

Take a Team-Based Approach: Stay passionate about learning new technology and co-innovate

Lead by Serving: Value cross-disciplinary perspectives and collaboration

Johns Hopkins Tech Hub Coming 2019!
Johns Hopkins faculty, staff, students, and affiliates will soon have a place to shop for and explore technology on the East Baltimore campus to aid their professional and personal lives. Workstation hardware equipment from vendors like Apple, Dell, and Microsoft can be purchased and serviced by IT@JH professionals. The JH Tech Hub will feature a software Testing Lab hosted by the TIC, open to Johns Hopkins affiliates who would like to test out a showcase of medical software solutions.

The Johns Hopkins Tech Hub is located on the ground floor of the Rangos Building at the corner of Ashland Avenue and North Wolfe Street.

Connecting Through New Mediums

TIC has a Fresh Web Presence
In Winter 2019 we launched a new website to better align with our mission of improving patient care with innovative medical software solutions. The website’s modern interface speaks to the vibrant culture at the TIC and provides a more complete view into the team’s interworkings.

Learn about the team’s diverse expertise in areas like user experience design, software development, and data analytics.

View case studies that show solution life cycles from concept to impact using projects from the TIC’s work portfolio.

Browse leadership programs for entrepreneurialism, data stewardship, and precision medicine including application details.

Visit us at: TIC.JH.EDU
RI is very complicated,” said Mueller. “I felt responsible to help minimize delays by identifying areas for improvement.”

MRI patients can be delayed for numerous reasons. A typical culprit for delay is incomplete or missing MRI screening forms. Human elements such as claustrophobia also contribute.

While much of the information that leads to delays is captured in the electronic medical record, that information is recorded as free text and therefore hard to quantify and assess what’s causing the delay.

Mueller and her team began working with Technology Innovation Center designers and developers to sort out delays. The TIC started by searching for strings of text that became color-coded delay types. Designers and developers then created a data capture system and dashboard for MRI techs to document delay reasons and other information.

She pointed to one delay condition, ‘Patient Ready’, that allows technologists across the hospital to expedite patients.

We have magnets across the campus. Technologists can use the dashboard filters to sort the list of patients more quickly,” said Mueller.

In later phases of the dashboard, Mueller says she hopes to get delay feedback to physicians to assist in resolving the delays. The data can be used as a guide to developing an educational tool and to better expedite MRI patients.

The goal for the MRI dashboard is to reduce delays, identify trends, and utilize the data to improve patient care and department workflow,” said Mueller.

Mueller added that the dashboard exemplifies the success of a collaborative effort; the support of MRI leadership and active engagement with the tool from MRI frontline staff, with technical assistance from the TIC, catalyzes overall improvement in patient care.
MS Visualization: Helping Patients See Patterns in their Disease

Multiple Sclerosis (MS), a chronic disease affecting the central nervous system, is highly variable in the way it affects individuals. Collecting data for a large MS patient cohort and then connecting the dots between data and outcomes is difficult; it requires precision medicine.

When the Multiple Sclerosis Center received a Johns Hopkins Precision Medicine Center of Excellence grant, the center’s leader, Dr. Peter Calabresi, Professor of Neurology, asked Dr. Ellen Mowry, Associate Professor of Neurology, to join the effort of converting numerical data and leading patients to patterns.

“To try to piece together all the data in your head and show that relationally … it is sort of impossible by just having a table with 700 data points,” said Mowry.

Bolstered by the Johns Hopkins Precision Medicine initiative, Mowry, Calabresi, and their team have worked over the past two years to find better ways to collect, align, and display historical and current data for improved monitoring of how interventions and lifestyle influence individual patients.

The Technology Innovation Center worked with Mowry to create the MS Visualization software to assist with this process.

The MS Visualization software shows individual patient data — from prescription medications to relapses, MRI lesions, and MS-specific scores — over time, so that clinicians and their patients can look for patterns in their diseases.

“The visualization tool allows us to give back to patients,” said Mowry. “We are going to look at what the disease is like and what changes they made that have the largest impact.”

Mowry said that a useful feature of the tool is the overlay of clinical outcomes on top of medications used to treat MS because it is hard to keep the order of events top of mind per patient.

“I hope it will help people as they come to the clinic have a better understanding of what their course has been like and what changes they made that have the largest impact,” said Mowry.

In addition to helping patients see patterns, Mowry said the tool allows her and other clinicians at the center to quickly identify good candidates for clinical trials of new treatments.

She added that one of the best parts of this process is getting to know people and resources at Johns Hopkins that she never knew existed.

One of the things that we’ve really liked about working with the Precision Medicine effort is that the university has its eye on not only impacting the care of the people at Johns Hopkins, but ultimately improving the care of people worldwide,” said Mowry.

MS VISUALIZATION TEAM: Dr. Ellen Mowry (pictured), Dr. Peter Calabresi
Rubicon: Coordinating the Complexities of Pediatric Sepsis Care

Dr. Jim Fackler, Associate Professor of Pediatric Anesthesiology, who serves the Johns Hopkins Hospital Pediatric Intensive Care Unit, has been working toward automating clinical sepsis support for almost 25 years.

Sepsis, often a hospital acquired condition, is a life-threatening response to infection that results in 7,000 child deaths annually.

The Rubicon tool was developed as a comprehensive approach to the early detection, correct diagnosis, and tracking of therapies for treatment of sepsis.

“It puts structure around what had been a chaotic process,” said Fackler.

Clinicians can use the tool to preemptively track patients who are at risk for sepsis and leverage established decision support guidelines for those who have been diagnosed. Patients are given labels such as Sepsis Watch, Sepsis Warning, and Sepsis according to their current status.

Based on the patient’s status label, treatment recommendations including antibiotic prescriptions and dosages are made. Care teams are coordinated through a unique patient status timeline and real-time messaging using Team CORUS, a secure clinical messaging platform.

Rubicon team:
Dr. Jim Fackler

“My first experience with the TIC was with the design team. Bringing my paper sketches to life in the wireframes was step one,” said Fackler.

The wireframes were then passed from user experience designers to software developers who developed the solution.

Rubicon will be deployed to the 40-bed Johns Hopkins Hospital PICU unit in spring 2019.

According to Fackler, the most impactful feature of the tool will be the ability to learn what treatments were the most effective.

Every child deserves their care delivered with precision,” said Fackler.

The goal of the tool is to help save the lives of sepsis patients while also dramatically reducing recovery time and disabilities suffered by survivors.

Fackler first came to the Technology Innovation Center in 2017 for the design and development of the solution.

For intensive care units similar to the PICU where Fackler treats patients, this means earlier sepsis diagnosis, reduced antibiotic usage, and therapeutic precision.
HealChat: Taking Secure Clinical Communications Beyond Johns Hopkins

The Technology Innovation Center reached a milestone in 2018: it licensed an enterprise-grade software product for commercialization. Healalytics, a healthcare analytics start-up, is taking Team CORUS to market under the name HealChat.

Healalytics, founder of Healalytics, first became involved with the TIC through his role as a Mentor-in-Residence at Johns Hopkins Technology Ventures.

“It was one of my first mentoring tasks,” said Chakales. “To go down and review the catalog of products to see if there was any commercial viability.”

Team CORUS is a secure messaging platform used across all of Johns Hopkins Medicine that keeps patient care teams coordinated. The platform currently averages 6,000 unique users per day and hosts over 120,000 private messaging channels.

Chakales was drawn to Team Corus for its ability to meet HIPAA compliance standards while transferring secure patient health information.

Hospitalist physician Dr. Anirudh Sridharan said he believes Team CORUS’ vast network of users is what gives the tool its edge over other platforms. Sridharan cares for patients at the Howard County General Hospital who see physicians on other Johns Hopkins medical campuses, leaving him with the question: “How do I get in touch with this provider that I have never met before?”

Physicians like Dr. Sridharan use Team CORUS to look up the name of any clinical staff and start a discussion about care plans of a specific patient. Providers can collaborate across the Johns Hopkins institution with little friction using Team CORUS.

“Without that network of users, you can’t get this type of easy communication,” says Sridharan.

HealChat will ramp up in early 2019, beginning with the Mid-Atlantic and Southeast regions. In the future, Pete Chakales hopes to see broad adoption of the technology, enabling currently disconnected providers to better facilitate the delivery of care.
Active Care:

Increasing Control & Comfort for Men with Prostate Cancer

RESULTS ARE IN: Active Care, the prostate active surveillance predictive tool, helps patients better understand their cancer risk and perceived control.

Active Care is a software platform that provides predictions to clinicians and their patients in the prostate active surveillance program. Clinicians discuss with patients how their prostate cancer might progress based on historic, demographic, and lab data, which is put through an algorithm to produce outcome predictions.

Dr. H. Ballentine Carter, Director of the Prostate Cancer Program at Johns Hopkins Hospital, designed the application with the Technology Innovation Center and began using it with patients in spring 2017.

“I use it virtually every day,” said Carter. “It helps me to individualize my follow-up care.”

A research team working with Carter studied the effects of using the application with 36 prostate active surveillance patients. Men who were shown predictions from the tool had a 12.8-point increase (scale: 0 to 100) in perceived cancer control compared to men not shown the predictions, who had a 6.3-point increase.

After seeing success with the study, the Technology Innovation Center worked with Carter and his team to improve the algorithm’s speed and integrate with clinical workflow by making the tool accessible through the medical record.

“Literally, you’re inside a patient’s record and you can open it [Active Care] and get all of the information you need,” said Carter.

Carter says the tool will continue to be successful in helping Johns Hopkins standardize care and making patients more comfortable by knowing their likelihood of cancer, relieving burden.

EpiWatch:

Bringing Seizure Detection to Consumer Wearables

PIWATCH, the research project that uses the Apple Watch to assist in tracking of seizures and disease management for patients with epilepsy, has a new seizure detection and notification feature, included in the latest release of the Technology Innovation Center-developed app.

Epilepsy patients testing this new feature receive a notification when a seizure is detected and are prompted to either confirm or deny the event. The patients’ labeling of a false alarm improves the detection algorithm.

According to Crone, EpiWatch’s seizure detector on the Apple Watch now has sensitivity comparable to devices used solely for epilepsy seizure detection. EpiWatch has recorded over 1,000 seizures nationwide.

Accurate seizure detection could change the way epilepsy patients manage their disease, and ultimately save more lives.

“Knowing that the majority of patients have an increase in heart rate during seizures, we wanted to use this technology to help patients detect seizures,” said Crone.
In 2018, the TIC hosted its fourth Hexcite cohort. Teams went through 16 weeks of rigorous workshops to conduct 40 customer interviews, design their technology, and prepare to conduct a pilot in the clinical space. They presented their final pitches at Johns Hopkins Digital Health Day.

HEXCITE TEAMS

RUBICON
A software platform that diagnoses, guides, and tracks precision care for hospital-acquired conditions.

MY-DOCTOR
A mobile app for patients to review their care teams and deliver real-time feedback.

FXAR
An augmented reality application that assists with customized-to-patient training for complex orthopedic surgeries.

HERO
An adverse event reporting platform that harnesses natural language processing to aid assessment and behavior change.

OTOPHOTO
A mobile app for parents to quickly assess ear infections using image recognition and machine learning.

PRECOG
A platform that guides financial and quality managers through prioritizing review of patient cases with large financial impacts.

It was educational and thought provoking for sure, and certainly took me out of my comfort zone. In the end, the program helped us focus our thoughts to take what we suspected was a strong idea and envision it as something sustainable and marketable.”

David Rini – FxAR, Art as Applied to Medicine
EADS (Leadership in Analytics and Data Science) is a hands-on leadership development program for Johns Hopkins analysts. The program combines technical data science training with data stewardship policy from the Johns Hopkins Medicine Data Trust.

Each LEADS session is led by analytics leadership from across the institution for knowledge sharing that creates community.

Participants grew their professional network by an average of 22 members, doubling their contacts in the Data Trust.

96% of participants were ‘very’ or ‘extremely’ likely to recommend the program to other analysts.

“LEADS is a great program that strengthens the organization’s analytical workforce by connecting people with different backgrounds and expanding their knowledge base. I attended LEADS’ first cohort and felt it was important to give back to the data community by serving as a faculty for its second cohort.”

Yury Panflora, LEADS Program Faculty

DATA TELLS THE STORY:
Based on pre- and post-course assessments from the initial LEADS cohort in 2017:

Participants grew their professional network by an average of 22 members, doubling their contacts in the Data Trust.

96% of participants were ‘very’ or ‘extremely’ likely to recommend the program to other analysts.

COLLABORATIVE ASSIGNMENT:
Using de-identified data from 60,000 asthma patients at Johns Hopkins Medicine, LEADS participants were paired in teams and leveraged individual strengths to draw meaningful conclusions about the data. Teams who demonstrate exceptional submissions in data visualization, quality evaluation, and prediction are recognized at the program’s closing graduation event.
AMP (Center of Excellence Analytics in Medicine Program) supports Johns Hopkins clinical research groups interested in leveraging data science to tackle diverse diseases. The program provides a deep dive into the cloud-based Precision Medicine Analytics Platform that combines various data types to help researchers design predictions about a specific disease.

Over the 12-week course, CAMP participants were introduced to data science and machine learning methodologies to interpret their data, while receiving guidance on IRB and grant submissions to move their research forward.

In the CAMP program, my team was introduced to the techniques of natural language processing and the experts in data science that can help take our project on pediatric inflammatory bowel disease to the next level.”

Dr. Steve Miller, Assistant Professor of Pediatric Gastroenterology

CAMP TEAMS:

- Scleroderma*
- Myositis*
- Pancreatic Cancer*
- Arrhythmogenic Cardiomyopathy*
- Bladder Cancer*
- Neurofibromatosis*
- Ulcerative Colitis
- Radiation Oncology
- Alcohol-Related Liver Disease
- Spine Surgery Outcomes
- Acute Myocardial Infarction
- Mood Disorders
- Venous Thromboembolism
- Bronchiectasis
- Ventilator-Associated Pneumonia
- Loeys-Dietz Syndrome

* = EXISTING PRECISION MEDICINE CENTERS OF EXCELLENCE
Expanding Precision Medicine through Shared Technology & Process

In 2018, the Precision Medicine team, supported by the Technology Innovation Center, scaled the Precision Medicine Centers of Excellence from two to nine. These Centers of Excellence act like internal start-ups, innovating for patients with specific diseases who could benefit from more individualized treatments. Discovery of more individualized information and treatment is driven by central, secure access to the right data. Delivery of these discoveries occurs through novel software applications and visualizations. As Centers of Excellence grew, the Technology Innovation Center worked toward making discovery and delivery software more widely available.

2018 Precision Medicine Centers of Excellence:

1. Prostate Cancer:
 A cancer that begins in the prostate
 GOAL: Determine risk and potential outcomes for patients in deciding when to delay treatments using historical outcomes and demographic data

2. Multiple Sclerosis:
 A chronic disease affecting the central nervous system
 GOAL: Build a tool that allows providers and patients to see disease progression data in one place and identify patterns using medical record, imaging, and other diagnostic data

3. Neurofibromatosis:
 A disease where tumors form in nerve tissue; for 8% of patients those tumors are malignant
 GOAL: Identify patients with higher risk of malignancy using genetic markers and imaging data

4. Myositis:
 An autoimmune disease involving inflammation of the muscle tissue
 GOAL: Identify characteristics of patients who successfully taper off immunosuppressive therapy using imaging, lung function tests, and EMR forms

5. Scleroderma:
 An autoimmune disease that manifests in many different organ systems
 GOAL: Study and predict the trajectory of the disease through observations of different organ systems, lung function tests, ECG and cancer progression

6. Bladder Cancer:
 A cancer that begins in the bladder
 GOAL: Determine how genomic data and autoantibodies correlate with the success of different therapies

7. Pancreatic Cancer:
 A cancer that begins in the pancreas
 GOAL: Discover variables that differentiate long-term survivors and patients who respond well to immunotherapy from patients with worse outcomes using genomic data

8. Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy:
 A disease where fibrous, fatty tissue replaces the right ventricle of the heart
 GOAL: Develop risk calculations for possible sufferers of the condition and recommendations for exercise using imaging, waveform, device, and diagnostic data

9. Johns Hopkins HealthCare:
 GOAL: Build statistical models for patients' health states, expenditures, and enrollment/disenrollment using demographics and claims data
The second annual Digital Health Day convened local innovators from the Johns Hopkins and Maryland health tech community to explore resource and collaboration possibilities across disciplines.

Building a Digital Health Ecosystem

JOHNS HOPKINS DIGITAL HEALTH DAY

The second annual Digital Health Day convened local innovators from the Johns Hopkins and Maryland health tech community to explore resource and collaboration possibilities across disciplines.

Motivating Keynotes

Event attendees were given the choice to attend 3 of the 14 hands-on workshops offered throughout the day with the goal of taking tactical steps toward starting or advancing their own digital health project.

Interactive Workshops

The Resource Showcase featured 32 exhibitors specializing in digital health. Attendees engaged with live telemedicine demos, learned about funding opportunities, and collaborated with local start-ups.

Resource Showcase

- Dwight Raum, Vice President and Chief Technology Officer for Johns Hopkins, opened Digital Health Day by highlighting precision medicine’s potential for large-scale impact.
Tallying TIC Impact

In 2018, the TIC scaled its impact to broader networks of people and organizations. TIC staff touched over 100 projects, and tightened process by tracking more hours spent on these projects than ever before. The TIC expanded effort on the institutional Precision Medicine initiative (Johns Hopkins inHealth) and the associated technology to reach nearly 4000 hours in 2018.

3,958 hrs
designated toward furthering institutional Precision Medicine efforts

18,290 hrs
tracked by TIC staff

111 Projects
contributed to by TIC teams

84 Teams
collaborated with the TIC

498 people engaged with the TIC:

247 attended TIC Digital Health Day

117
were trained in our programs

HEXCITE
LEADS
CAMP

134 worked with us through projects/other means
Collaborating with Like-Minded Innovators

JOHNS HOPKINS PROGRAMS

BIOENGINEERING INNOVATION & DESIGN
JOHNS HOPKINS TECHNOLOGY VENTURES

HEALTHCARE SOLUTIONS
JOHNS HOPKINS MEDICINE

SIBLEY innovationhub
JOHNS HOPKINS TECHNOLOGY VENTURES

Data Trust
JOHNS HOPKINS TECHNOLOGY VENTURES

DHi
telemedicine

START-UPS

ARTIFACT HEALTH
emocha
Healytics
PROTENUS

corrie
navio
bwell
EduMD

COLLABORATIONS

TEDCO
Microsoft
MICA
PHILIPS

Maryland
CRISP

ADVISORY BOARD
Mark Cochran PhD, MSc
Mary Cooke DHA, RN
Annette Fries JD
Peter Greene MD
Stephanie Reel MBA
Craig Williams PhD, MA
Sanford Wu MBA
Christy Wyskiel MBA

JOHNS HOPKINS MEDICINE
Michael Blandino MS
Cynthia Boyd MD, MPH
Luis Buenaver PhD
Rebecca Carino
H. Ballentine Carter MD
Akhil Chhatre MD
Christopher Chute MD, DrPH, MPH
Alan Cotrl MS
Nathan Crone MD
James Clark MD
Peter Calabresi MD
Peg Cooper MBA
Maria Cnach DNP, RN, FAAN
Kelly Daley PT, MBA
Ashwini Davison MD, MS
Mark Deise
David Efron MD
Jim Fackler MD
Sherri Flaks
Todd Frady MS
Michael Garey MD
Ed Grogan MS
Diana Gumas MS
Kathy Hackett MBA
Frank Hooy MS
Karen Horton MD
Audrey Huang PhD, MA
Michael Johnson MD
Blake Jones MD
Ihab Kamel MD, PhD
Eileen Kastan DrPH, MHS
Hadi Kharrazi MD, PhD, MSc
Gregory Kirk MD
Gregory Krauss MD
Alain Labrique PhD, MHS, MS
Tricia Landis RN
Harold Lehmann MD, PhD
Howard Lev MD, PhD
Steve Lubowitz MA
Jim Lustek
Mufaddal Mamawala MBBS, MPH
Seth Martin MD, MHS
Simon Mathews MD
Steven Miller MD
Doug Mogul MD, PhD, MPH
Stephanie Moore
Ellen Movry MD, MCR
Samantha Mueller
Greg Osgood MD
Jay Pasricha MD, MBBS
Ken Pienta MD
Stuart Ray MD
David Rini MD
Antony Rosen MD
Christine Robson MSN
Cory Sandone MA, CMI, FAMI
Bobbie Schilling
Brandy Schultz
Matthew Severson MS
Rishab Shah MD
Orla Sheehan MD, PhD, MSc
Zishan Siddiqui MD, MBA
Stephen Sisson MD
Kathy Smith MA
Valerie Smothers MA
Lisa Sparks MS
Carla Sproge MS
Phil Stabile MA
Kathryn Stamps MHA
Aniruddh Sritharan MD
Cherlene Tomaselli MBA
Reid Thompson MS
Elizabeth Tracey MS
Brian Van Winkel MBA
Aaron Watkins MA
Guy Welty MA
Laura Wortman MHA
Peter Zandi MD, PhD, MPH
Scott Zeger PhD, MS
Vivian Zhao MHS

BUSINESS COLLABORATORS
Adler Archer JD, MS
Peter Chakales
Chris College MBA
Nick Culbertson
Will Gee
Dan Kiselik
Mark Komisky JD
Robert Lord
Kristian Marquez CFA
Marisa MacClary MBA
Chris Meenan
Sandep Pulim MD
Jennifer Richardson MBA
Dan Roche MS
Gorkem Sevign MBA
Bob Storey

WHITING SCHOOL OF ENGINEERING
Gregory Hager PhD
Vass Vassileva-Clarke MA
Peter Sease MD
Alexander Szalay PhD
Youseph Yazdi PhD, MS, MBA

JOHNS HOPKINS TECHNOLOGY VENTURES
Jorge Aquino MBA, MA
Liz Burger MPA
Mark Maloney MS, JD
Brian Stansky MS
Nina Urban MS, MBA
Mark VanderZyl
Megan Wahler
Seth Zonies PhD

CAREY BUSINESS SCHOOL
Mike Doyle MEd
Ari Godfrey MBA
Sharon Kim PhD
Mary Somers MS
Roger Williams MEd, MBA

APPLIED PHYSICS LABORATORY
Brant Choe PhD, MS
Adam Cohan
Jordan Matelsky
Michael McShea MBA, MS
Geoffrey Oster MS
Alan Ravitz PhD, MS
Corban Rivera PhD

TEDCO
Moss Amer
Anne Balduzzi
Neil Davis MBA
John Gustin PhD
Jennifer Hammaker
Anatomy of a Technology Innovation Center:

Understanding how the Technology Innovation Center functions requires a closer look. The TIC anatomy sustains its people, environment, activity, value, and success.

People Powered
- Developers
- Designers
- Project Managers
- Data Analysts

Validating Value
- Advisory Board
- Iterative Development
- User-Centered Testing & Feedback
- Impact Assessed at Patient Level

Augmenting Activity
- Leadership Training
- Digital Health Day
- Co-Development & Collaborations
- Facilitating Connections

Environment Enticing Action
- Caffeine
- White Board Walls
- Online Team Chat
- Proximity to Hospital

Scaling to Success
- Technology Lifecycle Management
- IT Organization Integration
- Business-Based Sustainability
- Software as Building Blocks